3.3.8 \(\int \frac {(a+a \cos (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx\) [208]

Optimal. Leaf size=75 \[ \frac {3 a^{3/2} \text {ArcSin}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}} \]

[Out]

3*a^(3/2)*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+a^2*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*cos(d*x+c
))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {2842, 21, 2853, 222} \begin {gather*} \frac {3 a^{3/2} \text {ArcSin}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(3/2)/Sqrt[Cos[c + d*x]],x]

[Out]

(3*a^(3/2)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (a^2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/
(d*Sqrt[a + a*Cos[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2842

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Dist[1/(
d*(m + n)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n*Simp[a*b*c*(m - 2) + b^2*d*(n + 1) + a^2*d
*(m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &
& NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1] && (IntegersQ[2*m,
2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2853

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rubi steps

\begin {align*} \int \frac {(a+a \cos (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx &=\frac {a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}+\int \frac {\frac {3 a^2}{2}+\frac {3}{2} a^2 \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx\\ &=\frac {a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}+\frac {1}{2} (3 a) \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}-\frac {(3 a) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}\\ &=\frac {3 a^{3/2} \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.11, size = 79, normalized size = 1.05 \begin {gather*} \frac {a \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \left (3 \sqrt {2} \text {ArcSin}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 \sqrt {\cos (c+d x)} \sin \left (\frac {1}{2} (c+d x)\right )\right )}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(3/2)/Sqrt[Cos[c + d*x]],x]

[Out]

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(3*Sqrt[2]*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]] + 2*Sqrt[Cos[c + d*
x]]*Sin[(c + d*x)/2]))/(2*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(167\) vs. \(2(65)=130\).
time = 0.20, size = 168, normalized size = 2.24

method result size
default \(\frac {\left (3 \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right )+\sin \left (d x +c \right ) \cos \left (d x +c \right )+3 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, a}{d \sqrt {\cos \left (d x +c \right )}\, \left (1+\cos \left (d x +c \right )\right )}\) \(168\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(3*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*
x+c))+sin(d*x+c)*cos(d*x+c)+3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^
(1/2)/cos(d*x+c)))*(a*(1+cos(d*x+c)))^(1/2)/cos(d*x+c)^(1/2)/(1+cos(d*x+c))*a

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 803 vs. \(2 (65) = 130\).
time = 0.60, size = 803, normalized size = 10.71 \begin {gather*} \frac {2 \, {\left (a \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) \sin \left (d x + c\right ) - {\left (a \cos \left (d x + c\right ) - a\right )} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )\right )} {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sqrt {a} + 3 \, {\left (a \arctan \left (-{\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} {\left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) \sin \left (d x + c\right ) - \cos \left (d x + c\right ) \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )\right )}, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} {\left (\cos \left (d x + c\right ) \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + \sin \left (d x + c\right ) \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )\right )} + 1\right ) - a \arctan \left (-{\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} {\left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) \sin \left (d x + c\right ) - \cos \left (d x + c\right ) \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )\right )}, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} {\left (\cos \left (d x + c\right ) \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + \sin \left (d x + c\right ) \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )\right )} - 1\right ) - a \arctan \left ({\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ), {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + 1\right ) + a \arctan \left ({\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ), {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) - 1\right )\right )} \sqrt {a}}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/4*(2*(a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - (a*cos(d*x + c) - a)*sin(1/2
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*
c) + 1)^(1/4)*sqrt(a) + 3*(a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)
*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin(2*d
*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(
cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x
 + 2*c), cos(2*d*x + 2*c) + 1))) + 1) - a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*
c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*ar
ctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c)
 + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arct
an2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*co
s(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(
2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) +
 a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x
+ 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1
/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1))*sqrt(a))/d

________________________________________________________________________________________

Fricas [A]
time = 0.40, size = 90, normalized size = 1.20 \begin {gather*} \frac {\sqrt {a \cos \left (d x + c\right ) + a} a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 3 \, {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{d \cos \left (d x + c\right ) + d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

(sqrt(a*cos(d*x + c) + a)*a*sqrt(cos(d*x + c))*sin(d*x + c) - 3*(a*cos(d*x + c) + a)*sqrt(a)*arctan(sqrt(a*cos
(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(d*cos(d*x + c) + d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(3/2)/cos(d*x+c)**(1/2),x)

[Out]

Integral((a*(cos(c + d*x) + 1))**(3/2)/sqrt(cos(c + d*x)), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}}{\sqrt {\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*cos(c + d*x))^(3/2)/cos(c + d*x)^(1/2),x)

[Out]

int((a + a*cos(c + d*x))^(3/2)/cos(c + d*x)^(1/2), x)

________________________________________________________________________________________